AI Agent Intensive Co-Learning Group

Pod 提案:AI Agent 残酷共学小组

1. 基础信息

  • 项目名称: AI Agent 残酷共学小组 (AI Agent Intensive Co-Learning Group)
  • 负责人: Dex | Telegram: @dexhunt3r (GitHub: dexhunter)
  • 关联主线: LX BuildPath 生态 (2.4) - Co-learning 课程设计
  • 钱包地址: 无资金申请

2. 项目描述

  • What (项目内容):
    本提案旨在发起一个为期三周(计划2025年6月9日至2025年6月29日,报名时间2025年6月1日至6月8日)的AI Agent主题残酷共学小组。核心活动是围绕顶尖课程 CS598 Topics in LLM Agents(UIUC)涵盖的前沿研究论文及最新进展,进行高强度的论文研读、总结与讨论。本次共学将特别强调论文的精读、理解与个人观察的总结
    共学社群依托 LXDAO Telegram:https://t.me/LXDAO/

  • Why (项目缘由):
    AI Agent是由大型语言模型(LLM)驱动、能自主规划、调用工具并完成任务的新一代智能体,代表了人工智能领域的前沿。为帮助社区成员系统性学习并深入理解Agent技术:

    • 深入理解:系统性学习并掌握 LLM Agent 在推理、记忆、规划、工具调用、多模态处理等关键模块的核心论文和主流方法。
    • 总结观察:促进成员针对每周研读的论文独立思考,总结个人观察、批判性见解和潜在启发。
    • 批判与展望:基于论文学习,评估当前 Agent 技术的局限性(如数据、对齐、安全、人机协作等),并对下一代 Agent / AGI 的发展方向形成个人思考与展望。
      本项目面向对Agent前沿研究感兴趣的开发者、产品经理、研究者及实践者,尤其是喜欢高密度论文阅读、深度思考与总结提炼的共学型成员。
  • How (实施方案):
    共学为期三周,每周有核心议题和必读/选读论文清单,主要学习材料源自UIUC CS598课程并结合最新研究:

    • Week 1: AI Agent 基础、核心能力(推理、规划与记忆)
      • 核心议题:理解 AI Agent 的基本概念、发展现状以及构成 Agent 智能的关键能力。
      • 关键领域:Overview & Foundations, Reasoning, Planning, Memory。
    • Week 2: Agent 能力拓展(多模态)、框架(工具使用、RAG、多智能体)与评估
      • 核心议题:探索 Agent 在多模态理解方面的能力,学习构建和增强 Agent 的关键框架,并了解如何评估 Agent 的性能。
      • 关键领域:Multimodal Understanding, Tool Use, RAG, Multi-Agent Systems, Agent Evaluation。
    • Week 3: Agent 应用、挑战与未来展望
      • 核心议题:了解 AI Agent 在不同领域的具体应用,深入探讨其面临的关键挑战,并展望其向 AGI 发展的路径。
      • 关键领域:Agent Application (Auto-research, Coding, Social, Gaming), Challenges (Data, Safety, Alignment), Future Perspectives。
        参与者需每周投入充足时间精读指定论文,完成个人思考与观察总结,并积极参与社群讨论。

3. 资金申请

  • 首期申请: 0 USDT
  • 详细说明:
    • 本次共学小组初期主要依赖成员自发学习和研讨,由发起人Dex组织,暂无直接资金需求。
    • 若未来考虑设置优秀学习笔记激励、邀请外部嘉宾分享或组织线下研讨等,可能会有小额预算需求,届时将另行提案。

4. Milestone计划

阶段 时间 交付物 验证标准
筹备与招募 2025/6/1 - 2025/6/8 1. 详细共学计划(含论文清单、学习指引)发布
2. 招募信息在LXDAO及相关社群推广
3. 完成学员报名与分组(如有)
1. 共学计划文档在社群共享
2. 招募帖获得有效曝光
3. 至少 [例如: 15] 位合格成员确认参与
第一周学习 2025/6/9 - 2025/6/15 1. 完成第一周主题论文精读
2. 成员提交个人学习笔记/观察总结(形式不限,鼓励分享)
1. 多数参与者确认完成阅读任务
2. 社群内产生围绕第一周内容的有效讨论或至少 [例如: 5] 份学习总结分享
第二周学习 2025/6/16 - 2025/6/22 1. 完成第二周主题论文精读
2. 成员提交个人学习笔记/观察总结
1. 多数参与者确认完成阅读任务
2. 社群内产生围绕第二周内容的有效讨论或至少 [例如: 5] 份学习总结分享
第三周学习 2025/6/23 - 2025/6/29 1. 完成第三周主题论文精读
2. 成员提交个人学习笔记/观察总结
1. 多数参与者确认完成阅读任务
2. 社群内产生围绕第三周内容的有效讨论或至少 [例如: 5] 份学习总结分享
总结与沉淀 2025/6/30 之后 1. (可选)组织一次线上总结分享会
2. 汇总优质学习笔记/观察总结,形成共学成果沉淀
3. 收集反馈,评估共学效果
1. 分享会顺利举办,参与度良好
2. 形成一份可公开的共学成果文档或知识库条目
3. 收到至少 [例如: 70%] 参与者的反馈

5. 项目需求

  • 学习资源: 由发起人Dex基于UIUC CS598 Topics in LLM Agents 课程材料及最新研究进展整理并提供核心论文清单及辅助材料。
  • 协作平台: 主要使用 LXDAO Telegram 群组 (https://t.me/LXDAO/) 进行日常交流、资料分享、打卡和讨论。
  • 传播资源: 希望 LXDAO 官方渠道(如Forum, Twitter, 公众号等)协助宣传共学小组的招募信息及后续成果。
  • 组织支持: 发起人Dex负责整体的组织协调、内容引导和社群维护。

Pod Proposal: AI Agent Intensive Co-Learning Group

1. Basic Information

  • Project Name: AI Agent Intensive Co-Learning Group
  • Person in Charge: Dex | Telegram: @dexhunt3r (GitHub: dexhunter)
  • Related Mainline: LX BuildPath Ecosystem (2.4) - Co-learning course design
  • Wallet Address: No funding required

2. Project Description

  • What:
    This proposal aims to launch a 3-week intensive co-learning group (planned from June 9, 2025, to June 29, 2025, with registration from June 1 to June 8, 2025) focused on AI Agents. The core activity will be high-intensity reading, summarization, and discussion of cutting-edge research papers, primarily from the CS598 Topics in LLM Agents course (UIUC) and recent advancements. This co-learning will particularly emphasize in-depth reading, comprehension, and summarization of personal observations from the papers.
    The community will leverage the LXDAO Telegram group: https://t.me/LXDAO/.

  • Why:
    AI Agents, powered by Large Language Models (LLMs), are a new generation of intelligent entities capable of autonomous planning, tool use, and task completion, representing the forefront of AI. To help community members systematically learn and deeply understand Agent technology:

    • Deepen Understanding: Systematically learn and master core papers and mainstream methods in key LLM Agent modules such as reasoning, memory, planning, tool use, and multimodal processing.
    • Summarize Observations: Encourage members to think independently about the papers read each week, summarizing personal observations, critical insights, and potential inspirations.
    • Critique and Envision: Based on paper studies, evaluate the limitations of current Agent technologies (e.g., data, alignment, safety, human-computer collaboration) and form personal thoughts and outlooks on the development direction of next-generation Agents / AGI.
      This program targets developers, product managers, researchers, and practitioners interested in cutting-edge Agent research, especially those who enjoy high-density paper reading, deep thinking, and synthesis.
  • How:
    The co-learning will span three weeks, each with core topics and a list of required/optional readings, primarily sourced from the UIUC CS598 course and supplemented with recent research:

    • Week 1: AI Agent Foundations & Core Abilities (Reasoning, Planning, Memory)
      • Focus: Understanding the fundamental concepts of AI Agents, their current landscape, and the key capabilities that constitute their intelligence.
      • Key Areas: Overview & Foundations, Reasoning, Planning, Memory.
    • Week 2: Expanding Agent Abilities (Multimodal), Frameworks (Tool Use, RAG, Multi-Agent Systems) & Evaluation
      • Focus: Exploring multimodal understanding, key frameworks for building and enhancing agents, and methods for evaluating agent performance.
      • Key Areas: Multimodal Understanding, Tool Use, RAG, Multi-Agent Systems, Agent Evaluation.
    • Week 3: Agent Applications, Challenges & Future Outlook
      • Focus: Examining specific applications of AI Agents, delving into critical challenges, and contemplating future developmental paths towards AGI.
      • Key Areas: Agent Application (Auto-research, Coding, Social, Gaming), Challenges (Data, Safety, Alignment), Future Perspectives.
        Participants are expected to dedicate significant time each week to in-depth reading of assigned papers, complete personal reflections and observation summaries, and actively engage in community discussions.

3. Funding Request

  • Initial Request: 0 USDT
  • Details:
    • Initially, this co-learning group will rely on members’ self-driven learning and discussion, organized by the initiator Dex, with no direct funding requirements.
    • If future considerations include rewards for outstanding study notes, inviting external guest speakers, or organizing offline workshops, a small budget might be requested via a separate proposal.

4. Milestone Plan

Phase Timeline Deliverables Verification Criteria
Preparation & Recruitment 2025/6/1 - 2025/6/8 1. Detailed co-learning plan (incl. paper list, study guide) released
2. Recruitment info promoted in LXDAO & related communities
3. Participant registration completed
1. Plan document shared in community
2. Recruitment post achieves effective reach
3. At least [e.g., 15] qualified members confirmed
Week 1 Learning 2025/6/9 - 2025/6/15 1. Completion of Week 1 themed paper in-depth reading
2. Members submit personal study notes/observation summaries (flexible format, sharing encouraged)
1. Majority of participants confirm task completion
2. Meaningful discussions on Week 1 topics or at least [e.g., 5] shared summaries in community
Week 2 Learning 2025/6/16 - 2025/6/22 1. Completion of Week 2 themed paper in-depth reading
2. Members submit personal study notes/observation summaries
1. Majority of participants confirm task completion
2. Meaningful discussions on Week 2 topics or at least [e.g., 5] shared summaries in community
Week 3 Learning 2025/6/23 - 2025/6/29 1. Completion of Week 3 themed paper in-depth reading
2. Members submit personal study notes/observation summaries
1. Majority of participants confirm task completion
2. Meaningful discussions on Week 3 topics or at least [e.g., 5] shared summaries in community
Wrap-up & Knowledge Sharing Post 2025/6/30 1. (Optional) Organize an online wrap-up session
2. Compile high-quality notes/summaries into a co-learning knowledge base
3. Collect feedback & evaluate effectiveness
1. Session successfully held with good attendance
2. A public co-learning outcome document or knowledge base entry created
3. Feedback received from at least [e.g., 70%] of participants

5. Project Needs

  • Learning Resources: Initiator Dex will curate and provide a core paper list and supplementary materials based on the UIUC CS598 Topics in LLM Agents course and recent research.
  • Collaboration Platform: Primarily use the LXDAO Telegram group (https://t.me/LXDAO/) for daily communication, material sharing, check-ins, and discussions.
  • Promotion Resources: Request assistance from LXDAO official channels (e.g., Forum, Twitter) for promoting the co-learning group’s recruitment and subsequent achievements.
  • Organizational Support: Initiator Dex will be responsible for overall organization, content guidance, and community facilitation.

整体看下来都很棒,可能需要更多的是运营以及流程支持

感觉这个不需要申请 Pod,如果社区没有意见和建议,可以直接开始发起, @Vdell-sys 关注一下,跟进和支持残酷共学的相关流程。